Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
Crit Rev Microbiol ; 48(6): 714-729, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2319361

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) systems, since their discovery, have found growing applications in cell imaging, transcription modulation, therapeutics and diagnostics. Discovery of Cas12 and Cas13 have brought a new dimension to the field of disease diagnosis. These endonucleases have been extensively used for diagnosis of viral diseases in humans and animals and to a lesser extent in plants. The exigency of SARS-CoV-2 pandemic has highlighted the potential of CRISPR-Cas systems and sparked the development of innovative point-of-care diagnostic technologies. Rapid adaptation of CRISPR-chemistry combined with sensitive read-outs for emerging pathogens make them ideal candidates for detection and management of diseases in future. CRISPR-based approaches have been recruited for the challenging task of cancer detection and prognosis. It stands to reason that the field of CRISPR-Cas-based diagnosis is likely to expand with Cas12 and Cas13 playing a pivotal role. Here we focus exclusively on Cas12- and Cas13-based molecular diagnosis in humans, animals and plants including the detection of SARS-coronavirus. The CRISPR-based diagnosis of plant and animal diseases have not found adequate mention in previous reviews. We discuss various advancements, the potential shortfalls and challenges in the widespread adaptation of this technology for disease diagnosis.


Subject(s)
COVID-19 , Gene Editing , Animals , Humans , Gene Editing/methods , CRISPR-Cas Systems , SARS-CoV-2/genetics , COVID-19/diagnosis , Endonucleases/genetics , Endonucleases/metabolism
3.
Reprod Biomed Online ; 47(1): 157-163, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2310121

ABSTRACT

RESEARCH QUESTION: Has acceptance of heritable genome editing (HGE) and whole genome sequencing for preimplantation genetic testing (PGT-WGS) of human embryos changed after the onset of COVID-19 among infertility patients? DESIGN: A written survey conducted between April and June 2018 and July and December 2021 among patients at a university-affiliated infertility practice. The questionnaire ascertained the acceptance of HGE for specific therapeutic or genetic 'enhancement' indications and of PGT-WGS to prevent adult disease. RESULTS: In 2021 and 2018, 172 patients and 469 patients (response rates: 90% and 91%, respectively) completed the questionnaire. In 2021, significantly more participants reported a positive attitude towards HGE, for therapeutic and enhancement indications. In 2021 compared with 2018, respondents were more likely to use HGE to have healthy children with their own gametes (85% versus 77%), to reduce disease risk for adult-onset polygenic disorders (78% versus 67%), to increase life expectancy (55% versus 40%), intelligence (34% versus 26%) and creativity (33% versus 24%). Fifteen per cent of the 2021 group reported a more positive attitude towards HGE because of COVID-19 and less than 1% a more negative attitude. In contrast, support for PGT-WGS was similar in 2021 and 2018. CONCLUSIONS: A significantly increased acceptance of HGE was observed, but not of PGT-WGS, after the onset of COVID-19. Although the pandemic may have contributed to this change, the exact reasons remain unknown and warrant further investigation. Whether increased acceptability of HGE may indicate an increase in acceptability of emerging biomedical technologies in general needs further investigation.


Subject(s)
COVID-19 , Infertility , Preimplantation Diagnosis , Pregnancy , Adult , Female , Child , Humans , Pandemics , Gene Editing , Genetic Testing , Infertility/genetics , Infertility/therapy , Aneuploidy
4.
Funct Integr Genomics ; 23(2): 98, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2296757
5.
Genes (Basel) ; 14(2)2023 02 02.
Article in English | MEDLINE | ID: covidwho-2287595

ABSTRACT

Beyond its powerful genome-editing capabilities, the CRISPR/Cas system has opened up a new era of molecular diagnostics due to its highly specific base recognition and trans-cleavage activity. However, most CRISPR/Cas detection systems are mainly used to detect nucleic acids of bacteria or viruses, while the application of single nucleotide polymorphism (SNP) detection is limited. The MC1R SNPs were investigated by CRISPR/enAsCas12a and are not limited to the protospacer adjacent motif (PAM) sequence in vitro. Specifically, we optimized the reaction conditions, which proved that the enAsCas12a has a preference for divalent magnesium ion (Mg2+) and can effectively distinguish the genes with a single base difference in the presence of Mg2+, and the Melanocortin l receptor (MC1R) gene with three kinds of SNP sites (T305C, T363C, and G727A) was quantitatively detected. Since the enAsCas12a is not limited by PAM sequence in vitro, the method shown here can extend this extraordinary CRISPR/enAsCas12a detection system to other SNP targets, thus providing a general SNP detection toolbox.


Subject(s)
Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 1 , Receptor, Melanocortin, Type 1/genetics , Gene Editing/methods , CRISPR-Cas Systems , Bacteria/genetics
6.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: covidwho-2263678

ABSTRACT

The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus -RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Gene Editing/methods , RNA, Viral/genetics , RNA, Viral/metabolism
7.
Adv Sci (Weinh) ; 10(10): e2206433, 2023 04.
Article in English | MEDLINE | ID: covidwho-2263412

ABSTRACT

Conditional control of RNA structure and function has emerged as an effective toolkit. Here, a strategy based on a one-step introduction of diacylation linkers and azide groups on the 2'-OH of RNA is advance. Selected from eight phosphine reagents, it is found that 2-(diphenylphosphino)ethylamine has excellent performance in reducing azides via a Staudinger reduction to obtain the original RNA. It is demonstrated that the enzymatic activities of Cas13 and Cas9 can be regulated by chemically modified guide RNAs, and further achieved ligand-induced gene editing in living cells by a controllable CRISPR/Cas9 system.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/genetics
8.
Trends Biotechnol ; 41(3): 396-409, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285129

ABSTRACT

A series of spectacular scientific discoveries and technological advances in the second half of the 20th century have provided the basis for the ongoing genome editing revolution. The elucidation of structural and functional features of DNA and RNA was followed by pioneering studies on genome editing: Molecular biotechnology was born. Since then, four decades followed during which progress of scientific insights and technological methods continued at an overwhelming pace. Fundamental insights into microbial host-virus interactions led to the development of tools for genome editing using restriction enzymes or the revolutionary CRISPR-Cas technology. In this review, we provide a historical overview of milestones that led to the genome editing revolution and speculate about future trends in biotechnology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Biotechnology/methods , DNA/genetics
9.
CRISPR J ; 6(2): 116-126, 2023 04.
Article in English | MEDLINE | ID: covidwho-2272837

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic methods have a large potential to effectively detect SARS-CoV-2 with sensitivity and specificity nearing 100%, comparable to quantitative polymerase chain reaction. Yet, there is room for improvement. Commonly, one guide CRISPR RNA (gRNA) is used to detect the virus DNA and activate Cas collateral activity, which cleaves a reporter probe. In this study, we demonstrated that using 2-3 gRNAs in parallel can create a synergistic effect, resulting in a 4.5 × faster cleaving rate of the probe and increased sensitivity compared to using individual gRNAs. The synergy is due to the simultaneous activation of CRISPR-Cas12a and the improved performance of each gRNA. This approach was able to detect as few as 10 viral copies of the N-gene of SARS-CoV-2 RNA after a preamplification step using reverse transcription loop-mediated isothermal amplification. The method was able to accurately detect 100% of positive and negative clinical samples in ∼25 min using a fluorescence plate reader and ∼45 min with lateral flow strips.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , RNA, Viral/genetics , Gene Editing , RNA, Guide, Kinetoplastida/genetics
10.
Int J Biol Macromol ; 238: 124054, 2023 May 31.
Article in English | MEDLINE | ID: covidwho-2252112

ABSTRACT

Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.


Subject(s)
COVID-19 , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , COVID-19/genetics , Genome
11.
Microb Pathog ; 179: 106088, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2248536

ABSTRACT

Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Humans , Virus Diseases/diagnosis , Virus Diseases/drug therapy , Antiviral Agents/therapeutic use , Viruses/genetics , Gene Editing
12.
Chembiochem ; 24(9): e202200801, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2242957

ABSTRACT

Messenger RNA (mRNA) is being used as part of an emerging class of biotherapeutics with great promise for preventing and treating a wide range of diseases, as well as encoding programmable nucleases for genome editing. However, mRNA's low stability and immunogenicity, as well as the impermeability of the cell membrane to mRNA greatly limit mRNA's potential for therapeutic use. Lipid nanoparticles (LNPs) are currently one of the most extensively studied nanocarriers for mRNA delivery and have recently been clinically approved for developing mRNA-based vaccines to prevent COVID-19. In this review, we summarize the latest advances in designing ionizable lipids and formulating LNPs for intracellular and tissue-targeted mRNA delivery. Furthermore, we discuss the progress of intracellular mRNA delivery for spatiotemporally controlled CRISPR/Cas9 genome editing by using LNPs. Finally, we provide a perspective on the future of LNP-based mRNA delivery for CRISPR/Cas9 genome editing and the treatment of genetic disorders.


Subject(s)
COVID-19 , Nanoparticles , Humans , Gene Editing , CRISPR-Cas Systems/genetics , Gene Transfer Techniques , RNA, Messenger/genetics , COVID-19/genetics
13.
Signal Transduct Target Ther ; 8(1): 36, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2232481

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Genetic Therapy/methods
14.
Cells ; 11(23)2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2199806

ABSTRACT

Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plants, Genetically Modified/genetics , Genome, Plant , Stress, Physiological/genetics
15.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2110187

ABSTRACT

Early and rapid diagnosis of pathogens is important for the prevention and control of epidemic disease. The polymerase chain reaction (PCR) technique requires expensive instrument control, a special test site, complex solution treatment steps and professional operation, which can limit its application in practice. The pathogen detection method based on the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) system is characterized by strong specificity, high sensitivity and convenience for detection, which is more suitable for practical applications. This article first reviews the CRISPR/Cas system, and then introduces the application of the two types of systems represented by Type II (cas9), Type V (cas12a, cas12b, cas14a) and Type VI (cas13a) in pathogen detection. Finally, challenges and prospects are proposed.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Editing/methods , Polymerase Chain Reaction , CRISPR-Associated Proteins/genetics
16.
Nat Rev Drug Discov ; 21(9): 655-675, 2022 09.
Article in English | MEDLINE | ID: covidwho-2062224

ABSTRACT

Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.


Subject(s)
Cell- and Tissue-Based Therapy , Gene Editing , Humans
17.
Trends Biotechnol ; 40(11): 1326-1345, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2061924

ABSTRACT

An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.


Subject(s)
Gene Editing , Nucleic Acids , CRISPR-Cas Systems , Gene Editing/methods , Molecular Diagnostic Techniques/methods
18.
Biochemistry (Mosc) ; 87(8): 777-788, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992959

ABSTRACT

The development of a method for genome editing based on CRISPR-Cas9 technology was awarded The Nobel Prize in Chemistry in 2020, less than a decade after the discovery of all principal molecular components of the system. For the first time in history a Nobel prize was awarded to two women, Emmanuelle Charpentier and Jennifer Doudna, who made key discoveries in the field of DNA manipulation with the CRISPR-Cas9 system, so-called "genetic scissors". It is difficult to overestimate the importance of the technique as it enables one not only to manipulate genomes of model organisms in scientific experiments, and modify characteristics of important crops and animals, but also has the potential of introducing revolutionary changes in medicine, especially in treatment of genetic diseases. The original biological function of CRISPR-Cas9 system is the protection of prokaryotes from mobile genetic elements, in particular viruses. Currently, CRISPR-Cas9 and related technologies have been successfully used to cure life-threatening diseases, make coronavirus detection tests, and even to modify human embryo cells with the consequent birth of babies carrying the introduced modifications. This intervention with human germplasm cells resulted in wide disapproval in the scientific community due to ethical concerns, and calls for a moratorium on inheritable genomic manipulations. This review focuses on the history of the discovery of the CRISPR-Cas9 system with some aspects of its current applications, including ethical concerns about its use in humans.


Subject(s)
Gene Editing , Viruses , Animals , CRISPR-Cas Systems , Female , Gene Editing/methods , Genomics , Humans
19.
Front Cell Infect Microbiol ; 12: 869889, 2022.
Article in English | MEDLINE | ID: covidwho-1987466

ABSTRACT

Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.


Subject(s)
COVID-19 , Virus Diseases , COVID-19/therapy , Gene Editing , Humans , Pandemics , SARS-CoV-2/genetics
20.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1875640

ABSTRACT

Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.


Subject(s)
Gene Editing , Virus Diseases , Genome , Humans , Technology , Transcription Activator-Like Effector Nucleases/genetics , Virus Diseases/genetics , Virus Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL